Programmable Nanomaterials for Reversible CO₂ Sequestration Bruce Bunker, Dale Huber, George Bachand, Bill Smith, Mark Roberts, Pat Brady, Susan Rempe, and Dian Jiao Goal: Develop nano-materials that can be used to facilitate the programmable capture and release of CO₂ from water. #### Targets for CO₂ Sequestration Prevent Global Warming associated with the burning fossil fuels. (Fuels introduce 6 x 10^9 metric tons (6 GT) of CO₂ into the air each year.) Remove CO_2 from air. (Atmosphere = 5.1 x 10¹⁵ metric tons) Current CO₂: 377 ppm $(2 \times 10^{12} \text{ metric tons})$ Removal Goal: 109 metric tons/yr (1 km³ of liquid CO₂) Disposal: underground **Desired Cost:** \$10/metric ton (4 kcal/mole) Alternate: treat coal exhaust (10-15% CO₂) Processes must be selective, reversible, cheap, and capable of handling billions of tons of CO₂, preferably from air. SAND 2010-5443C ### **Nature Currently Mediates Atmospheric CO₂ Levels** Natural processes for CO₂ capture/release all involve water. #### Oceans (Capture/Release) ### Plants (Capture) #### **Animals (Release)** Ocean Volume = 2 x 10⁹ GT 2 x 10⁹ km³ "Dissolved C" (solubility + biomass) = 37,000 GT Land Biomass = 11,000 GT **β-carbonic** anhydrase 100 kg/yr/liter blood (Humans exhale 6 GT/yr) α-carbonic anhydrase Question: Can we adopt Nature's processing schemes in artificial systems? # Reversible Sequestration of CO₂ by Water Requires the Inter-conversion between "Insoluble" CO₂ and Soluble Carbonates Carbonates for capture <-> CO₂ for release Nature has developed a process! Can we adapt it to our needs? ## Programmable Polymers **Materials and Mechanisms** Catalytic Enzymes Research Goal: Develop nano-materials that can be used to catalyze reversible CO₂:carbonate inter-conversions. #### **Program Components and Staffing** # Programmable Polymers **Dale Huber** #### **Theory/Modeling** Susan Rempe, Dian Jiao # Programmable Enzymes **George Bachand** # CO₂ Loading/Unloading Experiments Mark Roberts, Bill Smith #### CO₂ Chemistry Capture $CO_{2}(g) \rightarrow CO_{2}(I)$ $CO_{2}(I) + OH- \rightarrow HCO_{3}^{-1}$ Release $HCO_{3}^{-} + H^{+} \rightarrow CO_{2}(I) + H_{2}O$ $CO_{2}(I) \rightarrow CO_{2}(g)$ **Bruce Bunker** #### **Process Development** **Bill Smith, Pat Brady** Developing understanding and processes for reversible CO₂ capture and release requires the efforts of a multidisciplinary team. # Process Development: Bench Scale Systems *Loading* Components: Gas handling hardware CO₂ sensor Solution reaction vessel pH measurement/titration FTIR spectroscopy Goal: Methodologies have been developed to introduce CO_2 gas, measure dissolved CO_2 and carbonates, collect and measure CO_2 gas, and determine the kinetics of CO_2 loading/unloading. SAND 2010-5443C ### Reversible CO₂ Sequestration: Baseline Experiments #### CO₂ Loading $CO_2(g) \rightarrow CO_2(I)$ - CO₂ dissolution in water can be rate limiting. - Bubbler design is critical. - Rate vs. efficiency #### CO₂ to Carbonates $CO_2(I) + OH^- \rightarrow HCO_3^-$ CO₂ (g) Conversion to HCO₃ - High CO₂ loadings are achieved in base. - Rates increase by 10 for unit increase in pH. - Reaction self limits as base is consumed and pH drops. #### CO₂ Unloading HCO_3 - + $H^+ \rightarrow CO_2(g) + H_2O$ - Acid promotes decomposition. - Decomposition is rapid until acid is consumed. - CO₂ is released until concentration drops to CO₂ solubility limit. The rate and extent of CO₂ loading and unloading in water have been measured in the absence of programmable materials (enzymes and polymers). ### **Proposed Research: Programmable Polymers** Range of pH Switch Non-linear Hydrophobic pKa Shifts Aspartic Acid **PNIPAM** Polymer formulations will be based on elastin or PNIPAM. Polymer compositions will be formulated and tested for: Magnitude of pH Switch Tethering/Deployment Substitutions to maximize the change in the polymer environment (hydrophilic to hydrophobic). Hydrophilic → low pH (H⁺ release) Hydrophobic → high pH (H⁺ capture) Substitutions in the acid group and local environment to tune the pKa. pН Phenylalanine (F) Aspartic Acid (D) or Glutamic Acid (E) Tune molecular weight to control dispersion in solution, or groups to anchor polymer to substrate and/or enzymes. Goal: Determine the extent to which polymers can program pH to promote CO₂:carbonate conversions or switch enzyme activity. SAND 2010-5443C ### **Programmable Polymers: Results to Date** - 1) The initial polymer formulation (PNIPAM/PAA) has been synthesized. - 2) Large concentrations of the polymer can be dissolved into water (> 5%). - 3) The polymer transition temperature in water is 34°C. - 4) The transition induces large, reversible changes in solution pH. - 5) Programming of the polymer should suffice for loading/unloading of CO₂. ### **Proposed Research: Switchable Enzymes** **Test Enzyme Activity** **Engineer Enzymes for Processes** # Develop Enzyme:Polymer Hybrids - Determine conversion kinetics - Determine processing window - Evaluate stability - Improve stability - Optimize switching - Provide tethering - Enzyme + polymer - Match performance Goal: Explore the incorporation of carbonic anhydrase into reversible CO₂ sequestration processes. #### **Switchable Enzymes: Results to Date** - 1) Small enzyme concentrations (10⁻⁵ M) triple CO₂-to-HCO₃- conversion rates. - 2) High enzyme concentrations should provide order-of-magnitude increases. ### Modeling Results: CO₂ Hydration and Hydrolysis Mechanisms Methodologies have been developed to study CO₂:water interactions. Example: Hydration energies calculated using Quasi-chemical theory. 30 20 CO₂ Interacting with H₂O Molecules #### Contributions to CO₂ Solvation Energy $$\Delta G_{\text{exp}}^{\text{qot}} = 0.2 \text{ kcal/mole}$$ packing (repulsion) $\Delta G_{qct} = 0.4 \text{ kcal/mole}$ Results show why solvation of hydrophobic CO₂ in water is unfavorable. Repusive molecular packing off-sets ionic and van der Waals attractions. Net #### **Proposed Research: Theory and Modeling** Goal: Predict rate constants for CO₂:carbonate conversions in water. $$CO_2 + EnZn-OH^- \downarrow K_d FinZn-OCO_2H \downarrow HCO_3^- + EnZn-OH_2$$ Zn-Complex in Carbonic Anhydrase Forward/Reverse Rate Constants vs. pH Example: Model the kinetics of CO₂ hydration and dehydration by the Zn-containing active site in carbonic anhydrase. #### **Proposed Research: Process Development** Prototype system explores reversible CO₂ capture using batch and continuous processes. Switchable materials could either be supported or dispersed in the liquid. Goal: Provide a test bed for exploring a wide range of reversible CO₂ sequestration processes that deploy switchable nanomaterials. ### **Examples: Process Development Options** # **Batch Process: Temperature Programming of Polymer pH** #### **Process A:** Single module contains programmable polymer. Polymer triggers capture or release with modest Δ T. # **Continuous Process: Enzymes + pH Control** #### **Process B:** At intermediate pH, one enzyme continuously loads, while the second enzyme unloads. Goal: Provide a test bed for exploring a wide range of reversible CO₂ sequestration processes that deploy switchable nanomaterials. #### **Program Benefits** #### Scientific and Technical Merits: Exploring water as a reversible agent for CO₂ capture. **SAND 2010-5443C** - 1)Water is cheap, abundant, and "process-friendly". - 2)Our programmable materials are "green" and benign. - 3) The work could impact other technologies (e.g. artificial lungs). #### **Programmatic Merits:** Technical visibility and funding opportunities in key research areas. - 1)Programmable materials (for CO₂, pH, etc.). - 2) Hybrid nanomaterials. - 3)Complements Sandia's "Sunshine-to-Petrol" Grand Challenge. - 4)Complements Columbia/SNL ARPA-E proposal. - 5)Promotes competing for Federal CO₂ sequestration funding (BES). Establish Sandia as a leader in developing the science and technology needed to mitigate Global Warming while allowing for the safe use of fossil fuels.